Computation of least order solutions of linear rational equations A . Varga

نویسنده

  • A Varga
چکیده

We propose a numerically reliable approach for computing solutions of least McMillan order of linear equations with rational matrix coefficients. The main computational ingredients are the orthogonal reduction of the associated system matrix pencil to a certain Kronecker-like staircase form and the solution of a minimal dynamic cover design problem. For these computations we discuss numerically reliable algorithms relying on matrix pencil and descriptor system techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Computing Least Order Fault Detectors Using Rational Nullspace Bases

We propose a numerically reliable computational approach to design least order fault detectors using descriptor system techniques. This approach is based on a new numerically stable algorithm to compute least order rational nullspace bases of rational matrices. The main computation in this algorithm is the orthogonal reduction of the system pencil matrix to a Kronecker-like form. The proposed a...

متن کامل

New Computational Approach for the Design of Fault Detection and Isolation Filters

We propose a numerically reliable computational approach for the design of residual generators for fault detection and isolation filters. The new approach is based on computing solutions of least dynamical orders of linear equations with rational matrix coefficients in combination with special rational factorizations. The main computational ingredients are the orthogonal reduction of the associ...

متن کامل

Computation of All Rational Solutions of First-Order Algebraic ODEs

In this paper, we consider the class of first-order algebraic ordinary differential equations (AODEs), and study their rational solutions in three different approaches. A combinatorial approach gives a degree bound for rational solutions of a class of AODEs which do not have movable poles. Algebraic considerations yield an algorithm for computing rational solutions of quasilinear AODEs. And fin...

متن کامل

Computation of Minimal Realizations of Periodic Systems

We propose balancing related numerically reliable methods to compute minimal realizations of linear periodic systems with time-varying dimensions. The first method belongs to the family of square-root methods with guaranteed enhanced computational accuracy and can be used to compute balanced minimal order realizations. An alternative balancing-free square-root method has the advantage of a pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004